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By R. E. Barnhill and J. A. Wixom 

1. Introduction. One approach to the problem of numerical integration on con- 
tours in the complex plane was discussed in a previous paper [1]. This paper is an 
application of that work to the quadrature problem fl f(x) - ZA~ Akf(zk). For 
a fixed n, {Ak}Jk'l and {Zk}Jk=l form a set of 2n variables. Let R.(f) = j-1if(z) dz - 
Z=1 Akf(Zk). Then Rn is a linear functional defined on a certain function space 
X. In the cases to be discussed, X is a Hilbert space. Suppose that { Pm} =o is a 
closed set of functions in X. Many of the standard quadrature methods amount 
to specifying certain side conditions and, subject to these, choosing the Ak and Zk 
so that Rn-1(O) = {If E X: R,(f) = O} contains a maximal number of the Pm. If 
PO, P1, *.. , P, are in Rn-1(0) and P,+, is not in RJ1 (0), then the quadrature is 
said to have precision s. Thus, for example, if X = C[a, b] and Pm(x) = xm, 
mz = 0, 1, , and the side conditions are that the Zk are specified beforehand, 
then choosing the Ak so that Rn l(0) contains a maximal number of the Pm(x) 
amounts to the usual interpolatory quadrature procedure. 

The procedure used in this paper is to minimize the norm of a certain error 
functional related to R, . Specifically, suppose that R?,(f) = Rn* (f(r)) where f(r) (z) 
denotes the rth derivative of f, and Rn* is a linear functional defined on the space 
of rth derivatives of functions in X. Then I Rn(f) |=- Rn *(f(r)) I _ | Rnl* || 11 j(r) 11 

and the problem is that of minimizing 1f Rn* 1f by an appropriate choice of the Ak 

and Zk . It has been shown [1] that minimizing with respect to the Ak (for fixed Zk) 

yields systems of linear equations to be solved; minimizing with respect to the Zk 

yields systems of nonlinear equations. In this paper, the Zk are assumed given 
beforehand and only the Ak are treated as variables. In a later paper, both the 
linear and nonlinear cases will be considered. 

2. The Equations to be Solved. In this paper we consider three sets of quadra- 
tures. For the first two sets, the space X is L2(E,), the L2 completion of H(E,), 
where H(E,) = {If: f is analytic on the ellipse E, with semimajor axis a, semiminor 
axis b = (a2 - 1)1/2 and p = (a + b)2} [2]. The "double integral norm" is ob- 
tained from the inner product 

(f, g) = fL f(z)g(z) dxly. 

For the first set of quadratures, { Pm(z)} I=o is defined by 

Prn(Z) = 2(m)n + 1)112 [T(pn+ml _p.-m-1)]-l/2Um(Z), 
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where Um(z) = (1 - z2)-12 sin [(m + 1) arc cos (z)], mn = 0, 1, * . . In fact, 
the set {Pm(z)}m=O forms a closed orthonormal set in L2(Ep). No polynomial pre- 
cision requirements are imposed for this set of quadratures so that Rn = Rn and 
I Rn 112 Em=o i Rn(Pm) 12. If the Zk are given in [-1, 1], then the Ak are real 
and denoted by ak. The resulting linear system of equations in the variables ak 

is as follows: 
n - oo _ o 

(1 ) iaj[ a(mI P) Um(zi) Um(zk) = X a(m, p)Y(m) Um(zk), k = 1, n, j=1 m=O M-O 

where a (m, p) = 4(m + 1) [#7r(pm+l - 17m-1) and 

,Y(m) = (M + 1)Y1[1 + (-1)m] in = 0,1, 

In matrix notation, (1) can be written as Ta = h, where T = (tk), tik = 

Zn oa(m, p)Um(Zj)Um(Zk), a = (ai, ,an)j, and h = (hi , ,, hn)T 
where hk = EM=O a(m, P)'Y(?l) Um(Zk). 

For the second set of quadratures, {Pm(Z)}mnzO is defined by Pm'(z) = 
2(m + )1/2[7r(pm+l _ p-m-1)j-/2Um(Z), where Um(z) is as above. For this set, 
precision is required for constant functions so that 11 Rn* 112 = Emo i Rn(Qm) 12, 

where Qm(z) = Pm'(z). Assuming that the Zk are given in [-1, 1], the resulting 
system of equations to be solved is the following: 

n - 0 a) 

E aj[2 X a (m, P)Tm+l(zj)Tm+l(Zk) = 2 Ad a(m, p)f3(m)T.?+l(zk) - (2 )j=1 m=O M=O0 
k = , ,n 

where X1 is a parameter, Tm+i(z) = cos [(m + 1) arc cos (z)], the (in + 1)st 
Tchebycheff polynomial of the first kind, aj and a (n, p) are as above, and ,3(O) = 0, 
/3(m) = [1 - (m + 1)2K-1[1 + (-1)m+?], m = 1, 2, *- . The system of equations 
(2) can be written in matrix form as Ta = h- X, where 

T = (tjk), 

00 

tik = 2Z a(mn, p)Tm+l(zj)Tm+l(Zk), 
im=O 

a = (a,, .an T, 

h = (h, ** hnT 

hk = 2Z a(m, p)/3(?nf)Tm+1(Zk), 
m=O 

and 

X = ( X1, k1, * * *, 

In the third set of quadratures, the space X is the L2 completion of H ([-1, 1]), 
where H([-1, 1]) = {If: f is analytic on [-1, 1]}. The "line integral norm" is ob- 
tained from the inner product 

(f, g) = f (1 -Z2Y'2f(z)g(z) (iz , 
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where i dz I denotes arc length. The L2 completion of H([-1, 1]) is with respect 
to the norm induced by this inner product. The Tchebycheff polynomials of the 
second kind form a closed orthogonal set in this space. Precision is required for 
constant functions so that R, (f) = R,*(ft) where f' is the derivative of f. This is 
the case r = 1 in Section 1. The resulting system of linear equations to be solved 
is the following: 

Z a [2 Z 6(m)Tm+l (zi)Tm+l(zk) 2 E 6(m)3(m))Tm+l (Zk) -X 

-3 j1 _ - mat= 
k= l ,n, 

where #(3(m) and Tr,,l+(z) are defined above, 6(m) = (m + 1V2[X(m)]2, 
X(n) = 2 1.3-5 ... (2m + 1)/2.4 ... (2m + 2), and Xi is a parameter. As 
before, system (3) can be written in matrix form as Ta = h -X . 

3. Description of the Computations. The elements of the matrix T and the 
vector h are infinite sums and hence must be approximated by finite sums. The 
approximating finite sums were obtained by fixing a positive integer N and summing 
the series until N consecutive partial sums were identical within the double preci- 
sion range of the computer (16 digits). For the double integral norm, N was fixed 
at 25, and the number of terms in the approximating series varied from 1050 to 35 
as a varied from 1.0001 to 5.0. For the line integral norm, N was fixed at 500 and 
the number of terms in the approximating series averaged about 350,000. The slow 
rate of convergence of the series for the line integral norm made it impractical to 
calculate T using more than ten abscissas. Using the IBM 7044 it requires approxi- 
mately 9 hours to compute and sum 10,000 terms of the series in the matrix T for 
the 16 Gauss abscissas. 

A direct method was used to calculate T-'. Then Newton's Method was used to 
improve the calculated T-1. If Do is the approximation to T--1, calculated by a 
direct method, then D1 = Do(2I - TDo) is the first iterate, with error measured 
by E1 = I - TD1. The iteration was terminated after mn steps when all the ele- 
ments of Em were less than 10 -4 in absolute value. 

For the double integral norm calculations, the matrix T becomes unstable with 
increasing values of a. For example, the determinant of T, using Gauss 7 point 
abscissas and a > 1.75, becomes smaller than 10-27. 

For this reason we were unable to obtain values for the quadrature weights and 
remainders with predictable reliability for some sets of base points for relatively 
large values of a. Hence, these are omitted from the following tables. 

The linear system of equations is solved by the Gauss-Seidel method [4]. Since 
T is real, positive definite, symmetric and has positive diagonal terms, the Gauss- 
Seidel method is known to converge. 

The approximations to 1f R,,* 11 and 1f Rn, 1f were calculated in the same manner 
as the approximations to the elements of the matrix T. Lee, Sun, and Lo [5] have 
calculated 1I R, is using known quadrature weights and we have verified their results 
as a check on our calculations. 

4. Tables. The following set of tables (tables 1-5) lists the quadrature weights 
and the norms of the remainders that were calculated using known abscissas. These 
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TABLE 5 

Line Integral Norm-Precision for Constants 

Abscissas Weights IIRn*II 

Trapezoid 1.00000000000 1.0650733423 

Simpson 0.34166233122 0.3225321140 
1.31667533756 

Weddle 0.11442868201 0.0681382406 
0.40254092837 
0.31437632017 
0.33730813889 

Gauss 2 pt. 1.00000000000 0. 2550563770 

Gauss 3 pt 0.56573797607 0.1498311203 
0.86852404786 

Gauss 4 pt 0.35402340648 0.1020021252 
0.64597659352 

Gauss 5 pt 0.24103044858 0.0752714571 
0.47512812123 
0.56768286040 

Gauss 7 pt 0.13156595754 0.0471841912 
0.27822895864 
0.38147838891 
0.41745338982 

Gauss 10 pt 0.06074063246 0.3475518407 
0.28496489128 

-0.48032018629 
1.60088303881 

-0.46626837611 

quantities were calculated for 22 values of a ranging from 1.0001 to 5.0 for abscissas 
corresponding to the following quadrature rules: trapezoid, Simpson, Gauss 2, 3, 
4, 5, 7, 10, and 16 point rules, and Weddle. For the trapezoidal rule and the Gauss 
2-point rule, the weights are 1.0. The quantities in the above list that are not in 
the tables in this paper are in the Unpublished M\iathematical Tables File. 

The quadrature weights are labeled from left to right on [-1, 11. Since sym- 
metric abscissas yield symmetric weights, the duplications are omitted from the 
tables. The numbers are expressed as floating point decimals with the number in 
parentheses being the power of ten. 

5. Examples and Use of Tables. The table following the examples (table 6) 

gives comparisons, for specific functions, of our quadratures with various known 

quadratures. For the examples given, the same abscissas were used for both the 

known quadratures and our quadratures. The numbers in parenthesis under the 

double integral norms indicate the values of a from which the quadrature weights 

were computed. 

As a specific example for using the minimum norm remainders listed in the 

previous tables, consider the function f(z) = e 2. 

(a) Double integral norm-no polynomial precision: 

R,(f) I 11 R, 11 11 f 11, where 11 R, 11 is tabulated in the tables and 
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|| f =1l {ffEP f(z) I2 dxdy} < M{ff dxdy} = M(irab) 12, 

where lV = maxzEEp I f(Z) I- 
For f(z) = e, j, = maxZE | e I = maxZEEp I e | = ea2. 

Therefore, I R.n(f) _ < 1 R. ea2 (irab) 12 = 1 e R. 11 e[ a a(a '2 121/2 

The following minimum values of .I R,,, e2 (irab)112 are obtained for the indi- 
cated abscissas from the values of a used in the preceding tables. 

Abscissas a 11 R. 11 ae2[7ra(a2 - 1)1/2]l/2 

Gauss 2 pt. 1.50 1.26993 
Simpson 1.50 1.87016 
Gauss 4 pt. 2.00 0.01290 
Gauss 7 pt. 2.00 0.63077 X 10-5 

Gauss 10 pt. 1.50 0.58202 X 10-6 

(b) Double integral norm-precision for constants: 
R. (f) f I I Rn* I II f' 1, where I Rn* I is tabulated and 

{At }1~~~~~~~/2 I f f'(z) 12 dx ?y < '(irab)112, 

where M' = maxZ Ep E f' (Z) 1 
For f(z) = e , JVI = maxZP 12zeZ I = maxZEEP 2(x2 + y2)1/2e22 thef 

Yf = 2aea2, and Il f II <? 2aea2 (7rab)1/2. 

I Rn(f) I < 1_ Rn* 1 .2aea2 [7ra(a2 
1 

1)1/2]1/2 

The following minimum values of 1f Rn* 11 2aea2 [ra(a - 1)/2]1/2 are obtained 
for the indicated abscissas from the values of a used in the preceding tables. 

Abscissas a fl Rn* 11 .2ae a2[7ra(a 2 1)/211/2 

Gauss 3 pt. 1.75 0.13611 
Simpson 1.30 1.51852 
Gauss 5 pt. 2.00 0.73809 X 10-' 
Weddle 2.00 0.12802 X 10-' 

(e) Line integral norm precision for constants: 
Rn(f) ' Rn* f 11, where R,,,* 11 is tabulated and 

f = (1 z2)1/2 1 f'(z) 121 }z I/2 

where I dz is arc length. 

fl f' = {fz (1- , )1/ f(z) 21 1z }1= {f (1 -1x2)1/2 1 f'(X) 12 dx} 

for the contour -1,1]. If we let 31 = maxxE[1,1] [( -x)12 Ilf'(x) 1]2, then 
(1 } 1/2 

ff 11 < VM'/dx = /2M. 
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Forf(z) =eZ, 

Pf(z 11 = {L (1 X2)1/2 I 2zez2 12 dz }1/ 

= 2{] (1-x2)12x2e2x dx} _ 2-/e2x\/2 = 2eV/2. 

Therefore, 

I Rn(f)I <_ I Rn* 11 2e\/2. 
The following values for 1 1i Rn* 2e\/2 are obtained for the indicated abscissas. 

Abscissa Rn* 11 2e/2 

Simpson 2.47978 
Weddle 0.52388 
Gauss 3 pt. 1.15197 
Gauss 5 pt. 0.57872 
Gauss 7 pt. 0.36277 

6. Conclusions. It appears as if the double integral norm quadratures with no 
polynomial precision will be the most practical of the three sets of quadratures. 
The line integral norm quadratures involved series which converge very slowly, as 
noted in Section 3. Hence these quadratures would probably be too expensive to 
compute for most practical purposes. 

For the examples calculated, the results of using the double integral norm 
quadratures with precision for constants did not seem significantly different from 
the results obtained using Gaussian quadratures. However, most of these com- 
parisons were made using Gaussian abscissas and hence the Gaussian quadratures 
probably appear better than they might if compared with quadratures involving 
other abscissas. 

It might be noted that if the Zk are given, but are complex, then the system of 
equations to be solved doubles in size. Also, as mentioned above, it is planned to 
treat the Zk as variables as well as the Ak . 
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